
GS Apex Mocking
Framework
Improving Your Apex Unit Tests

Leonardo Berardino, Principal Developer
leonardo@gscloudsolutions.com

Partner Logo Here

Leonardo Berardino
Principal Developer
Groundswell Cloud Solutions Inc
(a GyanSys Company)

Why Did We Build This?

Common Issues with Apex Unit Testing

Long Deployment Cycles!!

After 30 min!

Complex Test Setup

● Complex Data Models

● Every Test Seems To Be An

Integration Test

Common Issues with Apex Unit Testing

Case

Work Order
Line Items

Contact

Account

Product
 Required

Product
Consumed

Product

Service
Territory

Service
Appointment

Service
Resource

Work Order

Integration Tests
For integrated modules and functional testing.

Integration Tests
What Are They?

● The integration tests are responsible for assessing if different modules
from the application work well together.

● And for evaluating the system's compliance with the functional
requirements.

Integration Test
Integration Test

Integration Test
Integration Test Application Database

Application

Integration Tests
What Do They Test?

Integration Test
Integration Test

Integration Test
Integration Test DatabaseController Service

Service Selector

Selector

Trigger
Handler

Service

UoW

Flow

High-Processing Cost = Long Running Time

Slow Resource

API

Unit Tests
For individual modules testing.

Application

Database

Selector

UoW

Slow Resource
Unit Test

Unit Tests
What Are They?

Controller Service

Service Selector Trigger
Handler

Service

API

Unit Test Unit Test Unit Test Unit Test

Unit TestUnit TestUnit Test

Unit Test

● The unit tests are low-level and close to the application source code.

● They consist of testing individual components isolating them from the
other components.

Unit Tests
How Do They Deal With Dependencies?

● We can replace the real dependencies by Mocked Classes.

● But how can we create Mock Classes?

Application

Service

Service Selector

Service

UoW

Test Environment

Service

Service
Mock

Selector
Mock

Service
Mock

UoW
Mock

Unit Test

Unit Tests x Integration Tests

● Unit Tests don’t replace Integration Tests

● Both are different tools to ensure the high quality of our code

Unit Tests Integration Tests

Apex Stub API
Native Salesforce Apex Stub API

Allow us:
● To create mocked objects
● To handle method calls
● To read the method arguments
● To define the method return value

However:
● It is a low-level API
● It is necessary to implement the

Stub Provider interface
● It is not easy to understand and use

public interface System.StubProvider {

 Object handleMethodCall(

 Object stubbedObject,

 String stubbedMethodName,

 Type returnType,

 List<Type> listOfParamTypes,

 List<String> listOfParamNames,

 List<Object> listOfArgs

);

}

Test.createStub(...)

GS Apex Mocking
Framework
An Open-Source Easy-To-Use Mocking
Framework

● It encapsulates the STUB API complexity

exposing an easy-to-use fluent interface.

● It records the expected mock behavior and replicates

this behavior during the test execution phase.

● It also collects the execution statistics that can

be asserted on the assertion phase.

GS Apex Mocking Framework

GS Apex Mocking Framework

Salesforce Stub API

Creating An Unit Test
With the GS Apex Mocking Framework

Application

Unit Test Scenario

Database

PaymentService

InvoiceSelector

PaymentBroker
Client PaymentBroker

Invoice
1

3

2

4

● Has the Payment Broker been called once?

● Has the Payment Broker received the correct Invoice?

Invoice

Unit Test

Unit Testing Pattern

Arrange / Given

Act / When

Assert / Then

Unit Test - Arrange

Application

Creating The Invoice In Memory

PaymentService

Invoice

Unit Test

@IsTest

public class PaymentServiceTest {

 @IsTest

 static void processPaymentShouldCallBrokerWhenInvoiceIsValid() {

 // Generating a fake Invoice Id and creating the Invoice in memory

 Id invoiceId = MockerUtils.generateId(Invoice__c.SObjectType);

 // Creating the Invoice in Memory

 Invoice__c invoice = new Invoice__c(

 Id = invoiceId,

 State__c = 'Open',

 TotalAmount__c = 1,000.00,

 ...);

Creating The Invoice In Memory

Application

Create The Invoice Selector Mock

PaymentService

InvoiceSelector
Mock
Invoice

Unit Test

 // Starting the recording phase

 Mocker mocker = Mocker.startStubbing();

 // Creating the Invoice Selector Mock

 InvoiceSelector selectorMock = (InvoiceSelector) mocker.mock(InvoiceSelector.class);

 // Recording the return value for the getInvoice method

 mocker.when(selectorMock.getInvoice(invoiceId)).thenReturn(invoice);

 // Injecting the Invoice Selector Mock into the Payment Service

 PaymentService.invoiceSelector = selectorMock;

Create The Invoice Selector Mock

Application

Create The Payment Broker Client Mock

PaymentService

InvoiceSelector
Mock

PaymentBroker
Client Mock

Invoice

Unit Test

 // Creating the Payment Broker Cliner mock

 PaymentBrokerClient brokerClientMock = mocker.mock(PaymentBrokerClient.class);

 // Recording the method behavior

 brokerClientMock.processPayment(invoiceId);

 Mocker.MethodRecorder processPaymentRec = mocker.when().getMethodRecorder();

 // Injecting the Payment Broker Client Mock into the Payment Service

 PaymentService.brokerClient = brokerClientMock;

 // Stopping the recording phase and going to the execution phase

 mocker.stopStubbing();

Create The Payment Broker Client Mock

Unit Test - Act

Application

Creating Invoice In Memory

PaymentService

InvoiceSelector
Mock

PaymentBroker
Client Mock

Invoice

Unit Test
1 3

2

Invoice

Calling The Method Unter Test

 // Calling The Method Unter Test

 Test.startTest();

 new PaymentService().processPayment(invoiceId);

 Test.stopTest();

Unit Test - Assert

 // Asserting how many calls the method

 // PaymentBrokerClient.processPayment(Invoice__c invoice) has received

 System.assertEquals(1, processPaymentRec.getCallsCount());

Asserting The Results

● Has the Payment Broker received the correct Invoice?

● Has the Payment Broker been called once?

 // Asserting the argument invoice received on the

 // PaymentBrokerClient.processPayment(Invoice__c invoice) call

 System.assertEquals(

 invoice, processPaymentRec.getCallRecording(1).getArgument('invoice')

);

GS Apex Mocking Framework
Other Features

GS Apex Mocking Framework
Other features

 // It can have different return values depending on the argument value

 mocker.when(selectorMock.getInvoice('0I1000000111AAA'))

 .thenReturn(new Invoice__c(Amount__c = 1000.0));

 mocker.when(selectorMock.getInvoice('0I1000000222AAA'))

 .thenReturn(new Invoice__c(Amount__c = 2000.0));

GS Apex Mocking Framework
Other features

 // It can ignore the argument value

 mocker.when(selectorMock.getInvoice(null))

 .withAnyValues() // <====

 .thenReturn(new Invoice__c(Amount__c = 5000.0));

 // It can also simulate an exception

 mocker.when(selectorMock.getInvoice('0I1000000333AAA'))

 .thenThrow(new DmlException('Record not found'));

GS Apex Mocking Framework
Other features

 // We can define expected behaviors

 mocker.when(selectorMock.getInvoice('0I1000000444AAA'))

 .thenReturn(new Invoice__c(Amount__c = 4000.0))

 .shouldBeCalledOnce();

 mocker.when(selectorMock.getInvoice('0I1000000555AAA'))

 .shouldNeverBeCalled();

Open Source GS Apex Mocking Framework
Blog Post

https://gscloudsolutions.com/tips-tricks/gs-apex-mocking-framework

https://gscloudsolutions.com/tips-tricks/gs-apex-mocking-framework

Groundsweller’s at Dreamforce
We’re all wearing “G” pins so come say hello!

Groundswell Cloud Solutions team at Dreamforce

Cameron Reid

Emerging Technologies
Lead

Pei Huang

CTO

Gerauld Rivera

Marketing Cloud
Product Lead

Colin Hamilton

Field Service
Product Lead

Presenting: Best Practices
for Data Security in
Experience Cloud

Presenting: Named
Credentials: Securing &
Simplifying API Callouts

Presented: Diagramming
for the Admin

 3 pm today!

Savio Jose

Product Practice Manager

38

 Thank
 you

