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Why Did We Build This?



Common Issues with Apex Unit Testing 

Long Deployment Cycles!!

After 30 min!



Complex Test Setup

● Complex Data Models

● Every Test Seems To Be An 

Integration Test

Common Issues with Apex Unit Testing 
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Integration Tests 
For integrated modules and functional testing. 



Integration Tests
What Are They?

● The integration tests are responsible for assessing if different modules 
from the application work well together.

● And for evaluating the system's compliance with the functional 
requirements.
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Application

Integration Tests
What Do They Test?
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Unit Tests
For individual modules testing. 
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Unit Tests
What Are They?
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● The unit tests are low-level and close to the application source code.

● They consist of testing individual components isolating them from the 
other components.



Unit Tests
How Do They Deal With Dependencies?

● We can replace the real dependencies by Mocked Classes.

● But how can we create Mock Classes?
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Unit Tests x Integration Tests

● Unit Tests don’t replace Integration Tests

● Both are different tools to ensure the high quality of our code

Unit Tests Integration Tests



Apex Stub API
Native Salesforce Apex Stub API

Allow us:
● To create mocked objects
● To handle method calls
● To read the method arguments
● To define the method return value

However:
● It is a low-level API
● It is necessary to implement the 

Stub Provider interface
● It is not easy to understand and use

public interface System.StubProvider {

   Object handleMethodCall(

       Object stubbedObject,

       String stubbedMethodName,

       Type returnType,

       List<Type> listOfParamTypes,

       List<String> listOfParamNames,

       List<Object> listOfArgs

   );

}

Test.createStub(...)



GS Apex Mocking 
Framework
An Open-Source Easy-To-Use Mocking 
Framework



● It encapsulates the STUB API complexity 

exposing an easy-to-use fluent interface.

● It records the expected mock behavior and replicates 

this behavior during the test execution phase.

● It also collects the execution statistics that can

be asserted on the assertion phase.

GS Apex Mocking Framework

GS Apex Mocking Framework

Salesforce Stub API



Creating An Unit Test
With the GS Apex Mocking Framework
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● Has the Payment Broker been called once?

● Has the Payment Broker received the correct Invoice?

Invoice



Unit Test

Unit Testing Pattern

Arrange / Given

Act / When

Assert / Then



Unit Test - Arrange



Application

Creating The Invoice In Memory
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@IsTest

public class PaymentServiceTest {

   @IsTest

   static void processPaymentShouldCallBrokerWhenInvoiceIsValid() {

       // Generating a fake Invoice Id and creating the Invoice in memory

       Id invoiceId = MockerUtils.generateId(Invoice__c.SObjectType);

       // Creating the Invoice in Memory

       Invoice__c invoice = new Invoice__c(

           Id = invoiceId,

           State__c = 'Open',

           TotalAmount__c = 1,000.00,

           ... );

Creating The Invoice In Memory



Application

Create The Invoice Selector Mock
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    // Starting the recording phase

    Mocker mocker = Mocker.startStubbing();

    // Creating the Invoice Selector Mock

    InvoiceSelector selectorMock = (InvoiceSelector) mocker.mock(InvoiceSelector.class);

    // Recording the return value for the getInvoice method

    mocker.when(selectorMock.getInvoice(invoiceId)).thenReturn(invoice);

    // Injecting the Invoice Selector Mock into the Payment Service

    PaymentService.invoiceSelector = selectorMock;

 

Create The Invoice Selector Mock



Application

Create The Payment Broker Client Mock
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    // Creating the Payment Broker Cliner mock

    PaymentBrokerClient brokerClientMock = mocker.mock(PaymentBrokerClient.class);

    // Recording the method behavior

    brokerClientMock.processPayment(invoiceId);

    Mocker.MethodRecorder processPaymentRec = mocker.when().getMethodRecorder();

    // Injecting the Payment Broker Client Mock into the Payment Service

    PaymentService.brokerClient = brokerClientMock;

    // Stopping the recording phase and going to the execution phase

    mocker.stopStubbing();

Create The Payment Broker Client Mock



Unit Test - Act
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Calling The Method Unter Test

       

    // Calling The Method Unter Test

    Test.startTest();

    new PaymentService().processPayment(invoiceId);

    Test.stopTest();



Unit Test - Assert



    // Asserting how many calls the method 

    // PaymentBrokerClient.processPayment(Invoice__c invoice) has received

    System.assertEquals(1, processPaymentRec.getCallsCount());

Asserting The Results

● Has the Payment Broker received the correct Invoice?

● Has the Payment Broker been called once?

    // Asserting the argument invoice received on the

    // PaymentBrokerClient.processPayment(Invoice__c invoice) call

    System.assertEquals(

       invoice, processPaymentRec.getCallRecording(1).getArgument('invoice')

    );



GS Apex Mocking Framework
Other Features



GS Apex Mocking Framework
Other features

    // It can have different return values depending on the argument value

    mocker.when(selectorMock.getInvoice('0I1000000111AAA'))

  .thenReturn(new Invoice__c(Amount__c = 1000.0));

    mocker.when(selectorMock.getInvoice('0I1000000222AAA'))

          .thenReturn(new Invoice__c(Amount__c = 2000.0));



GS Apex Mocking Framework
Other features

    // It can ignore the argument value

    mocker.when(selectorMock.getInvoice(null))

          .withAnyValues()  // <====

          .thenReturn(new Invoice__c(Amount__c = 5000.0));

    // It can also simulate an exception

    mocker.when(selectorMock.getInvoice('0I1000000333AAA'))

          .thenThrow(new DmlException('Record not found'));



GS Apex Mocking Framework
Other features

    // We can define expected behaviors

    mocker.when(selectorMock.getInvoice('0I1000000444AAA'))

          .thenReturn(new Invoice__c(Amount__c = 4000.0))

          .shouldBeCalledOnce();

    mocker.when(selectorMock.getInvoice('0I1000000555AAA'))

          .shouldNeverBeCalled();



Open Source GS Apex Mocking Framework 
Blog Post

https://gscloudsolutions.com/tips-tricks/gs-apex-mocking-framework

https://gscloudsolutions.com/tips-tricks/gs-apex-mocking-framework
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